

Tan Tao University - School of Engineering

1

GIAO

Syllabus

Instructor: Assoc. Prof. Tran Vu Khanh, PhD Time and Date: 8:30-11:50 Monday Office hour: appointment by email.

1. Description

This course introduces neural network and deep learning. Deep learning has gained significant attention in the industry by achieving state of the art results in computer vision and natural language processing. Students will learn the fundamentals and advances of of deep learning and modern techniques to build state of the art models such as CNN, RNN, Autoencoder, VAE, GAN, Deep-Q Learning. Students will use TensorFlow in two levels: Low Level and API Keras to build Deep Learning models and also Pytorch.

2. Prerequisites: MATH201, CS332

3. Course Objectives

Objective	Description	Outcome
OBJ1	Provide the concepts of Neural Networks, Deep Learning, Deep Reinfocement Learning	ELO6
OBJ2	Provide practical knowledge in a number of ANN, CNN, RNN, GAN, Autorendcoder, VAE, Deep-Q Learning	ELO7a, ELO7b ELO5
OBJ3	Be able to identify the type of machine learning, deep learning real-world problems and choose the right algorithms, models, tune parameters for solving problems.	ELO8

4. Learning Outcomes

At the end of this course, student has ability to

Objective	Outcome	Description	Outcome of
-----------	---------	-------------	------------

VERSE THE ST	TY			Curriculum		
	a. Knowledge					
	OBJ1	KO1	 Understand deep learning concepts and algorithms 	ELO4		
		KO2	 Choose the right deep learning algorithms for real-world problem solving; 	ELO5		
	OBJ2	КО3	 Develop and write a substantial deep learning models/functions in Python. 	ELO3		
		KO4	 Use TensorFlow, Keras, Pytorch to solve deep learning problems 	ELO3		
		KO5	- Building new architectes of Deep Learning	ELO6		
F	b. Skill					
	OBJ3	KO7	 Work in group (discussion and presentation); 	ELO12		
		KO8	 Search and read necessary information to solve facing problem; 	ELO8		

5. Text books/ Materials

There is no required textbook for this course. Several recommended books/materials will be recommended in the lectures such as:

- Bishop, Christopher. *Neural Networks for Pattern Recognition*. New York, NY: Oxford University Press, 1995. ISBN: 9780198538646.
- MacKay, David. Information Theory, Inference, and Learning Algorithms. Cambridge, UK: Cambridge University Press, 2003. ISBN: 9780521642989. Available on-line here.
- Charniak, Eugene. *Introduction to Deep Learning*. MIT Press, 2018. ISBN: 9780262039512.
- Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning. MIT Press. https://www.deeplearningbook.org/.
- Deep Learning Courses: MIT, Bekerly, Coursera, Edx.
- 6. Teaching Methods
 - There is 01 lecture / week (200 minutes/ lecture), each lecture consists of theory or practice depending on the topics.

- Students are required to complete at least 4h after each lecture to complete the practice problem (encourage to discuss with lecturer in office hours).
- Self-study via group assignment to solve simple real application (encourage to discuss with lecturer in office hours).
- Students are required to make report as well as presentation for group assignment.
- 7. Assessment
 - Individual assignment (Individual): 40%
 - Midterm: 30% (Quizzes: 40-50 questions)
 - _ Final exam: 30% (combine with Group assignment)
- 8. Calendar
 - Reading will be assigned after each lecture. ----

Week no.	Topic	TRƯỜN
1	Introductions and Review - Introduction to the course	ĐẠI HỌC \ TÂN TAO
	 Reviews of Algebra and Derivatives, Tensorflow, Pytorch Reviews of Linear models, Loss functions, Gradient descent, stochastic gradient descent, mini-batches Lab 	2.17 *
2	 Artificial Neural Network The architecture of a neural network, hidden layers, activation functions Mathematics of Forward-Backward propagations, Regularization Training a Neural Network, Improving and Tuning Lab 	
3	 Convolutional Neural Networks (CNN) Introduction to CNN Building a CNN model with grid size, padding, stride, depth and pooling Lab 	
4	 CNN Architectures and Transfer learning CNN architectures: LeNet-5, AlexNet, VGG-16/VGG-19, Inception and ResNet Transfer learning: how to apply them to an existing pretrained model, and to accelerate your training Lab 	
5	 CNN Advanced Techniques and Applications Data augmentation Application in Computer vision Lab 	

3

TAN TAO UNIVERSITY	6	Recurrent Neural Networks (RNN)
FROM KNOWLEDGE TO THE STAKS		- Introduction to RNN and their application to Natural Language
		Processing
		- Text Word to Vector
		- Lab
	7	Recurrent Neural Networks (continued)
		- RNN Architectures
		- GRU cells
		- Lab
	8	Midterm Project Presentations
	9	Recurrent Neural Networks (continued)
		- LSTM cells
		- Sequence to Sequence Models
		- Lab
	10	Autoencoders and VAE
		- Introduction to Autoencoders
		- VAE
		- Lab
	11	Generative adversarial networks (GAN)
		- Introduction to GAN
		- Wasserstein GAN
		- Lab
	12	Applications of Generative Deep Learning in
		- Paint with lab
		- Write and Compose with lab
	13	Introduction to Reinforcement Learning
		- Introducton to RL
		- Q-Learning
		- Policy Gradient Methods
		- Lab
	14	Deep Reinforcement Learning
		- Basic Deep Q-Learning
		- Actor-Critic Methods
		- Lab
	15	Final Project Presentations

9. Grading guidelines

TTU percentages	Letter Grade	GPA
97-100	A+	4.0
93-96	Α	4.0
90-92	A-	3.7
87-89	B+	3.3
83-86	В	3.0
80-82	B-	2.7

TTU percentages	Letter Grade	GPA
77-79	C+	2.3
73-76	C	2.0
70-72	C-	1.7
60-69	D	1.0
0-59	F	0.0

1 1

II.

1

• The minimal passing grade is C for all CS students.

Γ_{11}	20220	of	0000000	lastronom
гuп	name	01	course	lecturer:

Tran Vu Khanh

Nguyễn Thanh Điền

Signature:

Full name of department head:

Signature:

Cao Tien Dung

na

Registrar:

Signature:

Date:

28/12/202/

5