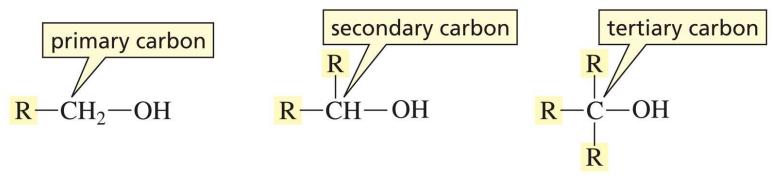

Chapter 4: Compounds bearing Oxygen


1. Alcohols and Phenols

□ Alcohols contain an OH group connected to a saturated C (sp³). General formula of aliphatic alcohol is ROH.

□ Phenols contain an OH group connected to a carbon in a benzene ring or called Aromatic alcohols

Classification of Alcohols

- □ Primary: Carbon with —OH is bonded to one other carbon.
- □ Secondary: Carbon with —OH is bonded to two other carbons.
- ☐ **Tertiary**: Carbon with —OH is bonded to three other carbons.

a primary alcohol

a secondary alcohol

a tertiary alcohol

Copyright © 2006 Pearson Prentice Hall, Inc.

IUPAC (Systematic) Nomenclature

Method

- ☐ Find the longest carbon chain containing the carbon with the —OH group.
- \square Drop the "-e" from the alkane name; add "-ol".
- □ Number the chain, giving the —OH group the lowest number possible.
- ☐ Number and name all substituents and write them in alphabetical order.

Old: 2-methyl-1-propanol

New: 2-methylpropan-1-ol

Old: 2-butanol

New: butan-2-ol

Old: 2-methyl-2-propanol

New: 2-methylpropan-2-ol

Examples

3-bromo-1-propanol 4-chloro-2-butanol

2-methyl-4-heptanol

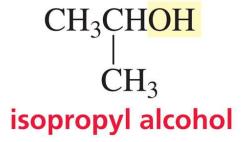
CH₃
OH

3-methylcyclohexanol

2-chloro-3-pentanol

Examples

Give each of the following compounds a systematic name, and indicate whether each is a primary, secondary, or tertiary alcohol:

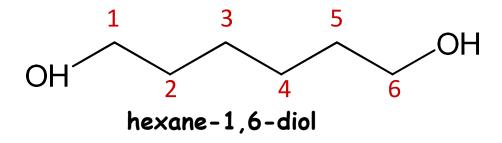

b.
$$CH_3$$

Write the structures of all the tertiary alcohols with molecular formula $C_6H_{14}O$, and give each a systematic name.

Common names of alcohol

- Common names are the name of alkyl group followed by the word "alcohol"
- □Useful only for small alkyl groups

CH₃CH₂CH₂OH propyl alcohol


Copyright © 2006 Pearson Prentice Hall, Inc.

isobutyl alcohol IUPAC: 2-methylpropan-1-ol

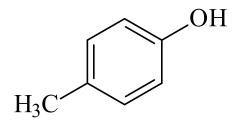
sec-butyl alcohol IUPAC: butan-2-ol

Naming polyalcohols

Use -diol, triol, tetraol, etc. for alcohols bearing two, three, four, etc as suffix instead of -ol in polyalcohol compounds.

□1,2-diols (vicinal diol) are called glycols. Common names for glycols use the name of the alkene from which they were made.

IUPAC: ethane-1,2-diol ethylene glycol

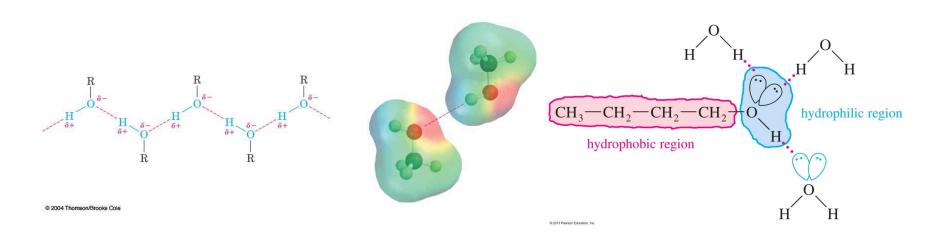

IUPAC: propane-1,2-diol propylene glycol

Phenol Nomenclature

Method

- \square -OH group is assumed to be on carbon 1.
- □ For common names of di-substituted phenols, use orthofor 1,2; meta-for 1,3; and para-for 1,4.

3-chlorophenol (meta-chlorophenol)


4-methylphenol (para-methylphenol Or Para-cresol)

Phenylmethanol

- Use "phene" (the French name for benzene) as the parent hydrocarbon name, not benzene
 - → If it is substituent, called "phenyl"

Properties of Alcohols and Phenols

- □ Alcohols and phenols can form Hydrogen Bonds
 - hold the two molecules together
 - Alcohols and phenols have much higher boiling points than similar alkanes and alkyl halides
- □Small alcohols are miscible in water, but solubility decreases as the size of the alkyl group increases.

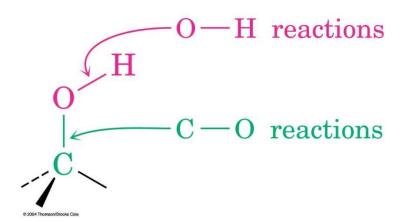
Acidity of alcohol and phenols

- ☐ They can transfer a proton to water to a very small extent
- \square Produces H_3O^+ and an alkoxide ion, RO^- , or a phenoxide ion, ArO^-

R—
$$\ddot{O}$$
: + H \ddot{O} H \leftrightarrow R— \ddot{O} : + H \ddot{O} H \leftrightarrow R— \ddot{O} : + H \ddot{O} H \leftrightarrow An alkoxide ion

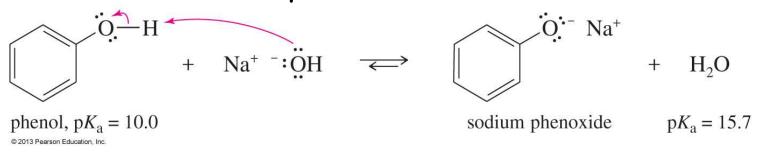
or Y— $\overset{\bullet}{H}$ + H $_2\ddot{O}$: \leftrightarrow Y— $\overset{\bullet}{H}$ + H $_3O$ + A phenoxide ion

solution and pKa = -log Ka


pK_a Values for Typical OH Compounds

- \square p K_a range of alcohols: 15.5-18.0 (water: 15.7)
- \square p K_a range of Phenols: around 10.0 (water: 15.7)
- Phenols is weak acid

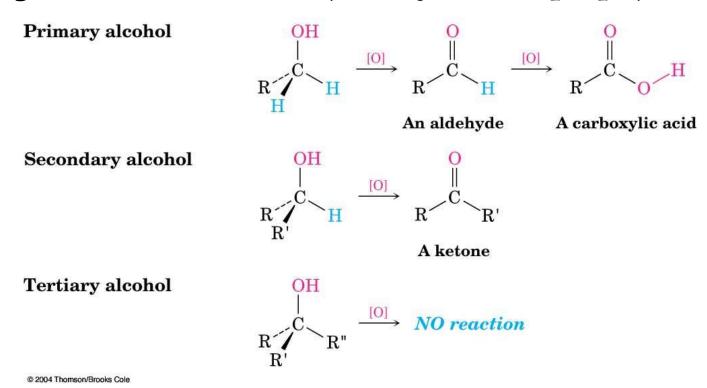
Alcohol or phenol	р $K_{ m a}$	
$(CH_3)_3COH$	18.00	Weaker acid
$\mathrm{CH_{3}CH_{2}OH}$	16.00	
HOH (water)	(15.74)	
$\mathrm{CH_{3}OH}$	15.54	
$\mathrm{CF_{3}CH_{2}OH}$	12.43	
p-Aminophenol	10.46	
p-Methoxyphenol	10.21	
p-Methylphenol	10.17	
Phenol	9.89	
p-Chlorophenol	9.38	
p-Bromophenol	9.35	
p-Nitrophenol	7.15	•
2,4,6-Trinitrophenol	0.60	Stronger acid


Reactions of Alcohols and phenols

- ☐ Two general classes of reaction
 - > At the carbon of the C-O bond
 - ➤ At the proton of the O-H bond

-H reactions

□ Because phenols are weak acids (reacted with strong bases, reaction at proton of O-H bond is easier.



$$R-O-H + Na \longrightarrow R-O-Na+ + \frac{1}{2}H_2 \uparrow$$

Example

Reactions of alcohols (not phenols)

Oxidation of Alcohols: Can be accomplished by inorganic reagents, such as KMnO₄, CrO₃, and Na₂Cr₂O₇

Give the product formed from the reaction of each of the following compounds with chromic acid:

- **a.** 3-pentanol **b.** 1-pentanol **c.** cyclohexanol **d.** benzyl alcohol

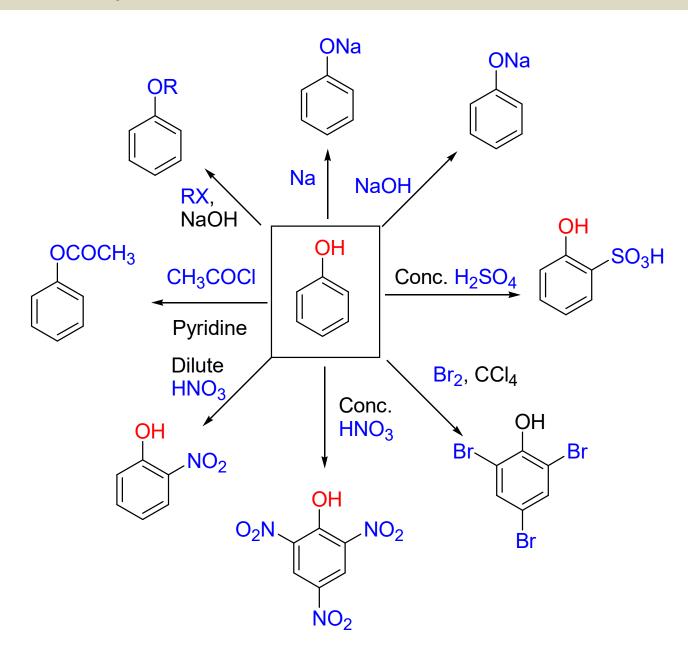
Reactions of alcohols (not phenols)

A dehydration reaction

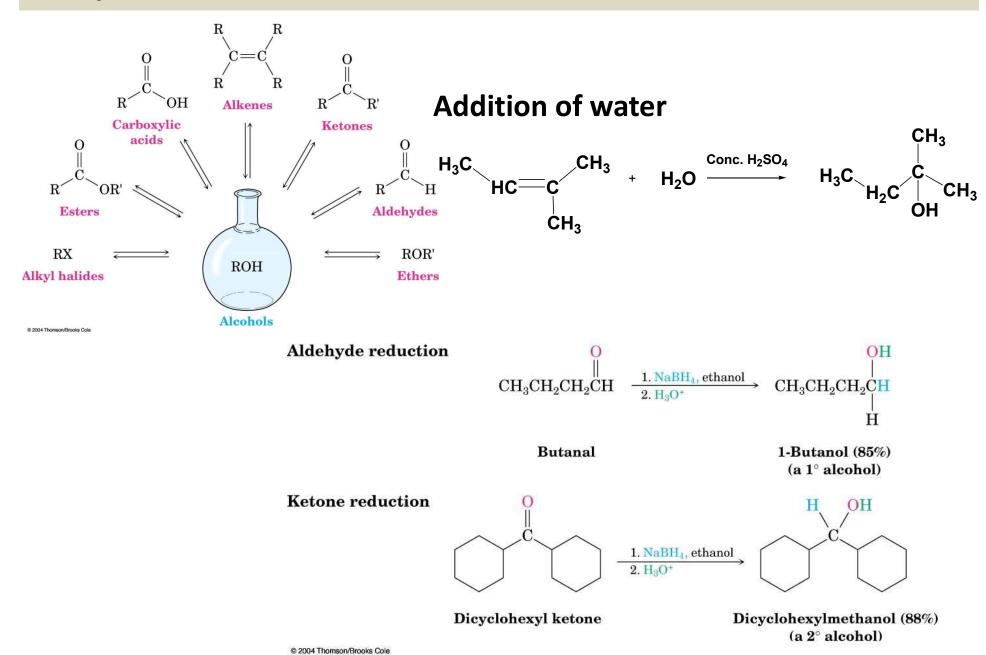
 $C-C \longrightarrow C=C + H_2O$

@ 2004 Thomson/Brooks Cole

According to Zaixep's rule


Give the major product formed when each of the following alcohols is heated in the presence of H_2SO_4 :

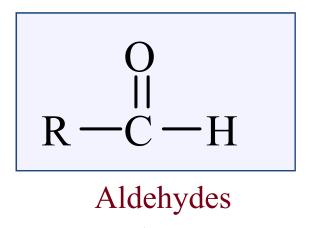
Reactions of alcohols (not phenols)

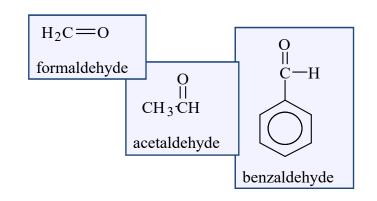

□ Substitution Reactions: OH group of alcohols can be substituted by halogen group or alcohol with acid catalyst

$$CH_{3}-OH + HBr \iff CH_{3}-H \xrightarrow{H} \xrightarrow{\Delta} CH_{3}-Br + H_{2}O$$
 weak base
$$R-OH + R-OH \xrightarrow{H^{+}} R-O-R + H_{2}O$$
 Weak base
$$R-OH + HI \xrightarrow{\Delta} CH_{3}CH_{2}CH_{2}I + H_{2}O$$

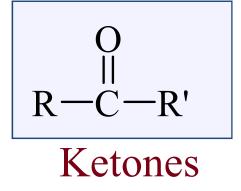
$$1-propanol$$
 a primary alcohol
$$OH \xrightarrow{L} HBr \xrightarrow{\Delta} HBr \xrightarrow{L} HBr \xrightarrow$$

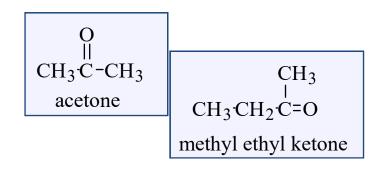
Reactions of phenols


Preparation of alcohols



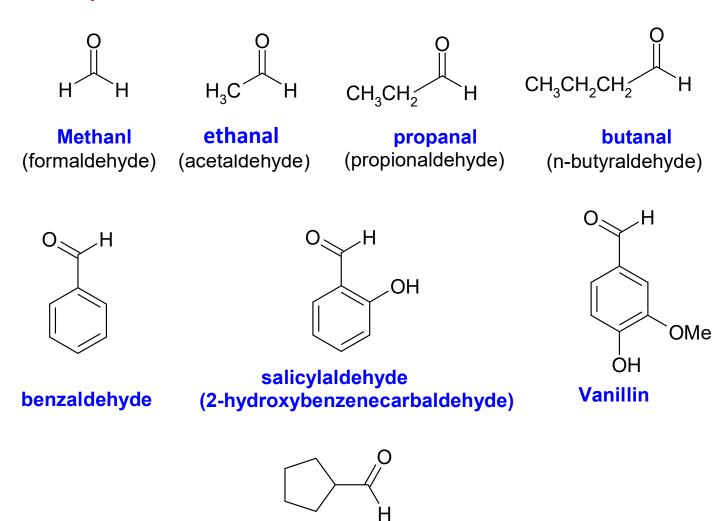
2. Aldehydes and Ketones (Carbonyl Group)


Carbonyl Group C=O: Present in aldehydes and ketones


□ Aldehydes have abbreviated formulas RCHO Containing at least one H connected to the C

□ Ketones have abbreviated formulas RCOR' and Carbonyl C is connected to two alkyl groups.

Nomenclature of aldehydes and ketones (IUPAC)


IUPAC Name:

- > Suffix is "-al" for the aldehydes
- > Suffix is "-one" for the ketones
- > indicates position of ketone

☐ An Aldehyde or Ketone takes precedence over any previously considered group

Common names of aldehydes

Using "aldehyde"

cyclopentanecarbaldehyde

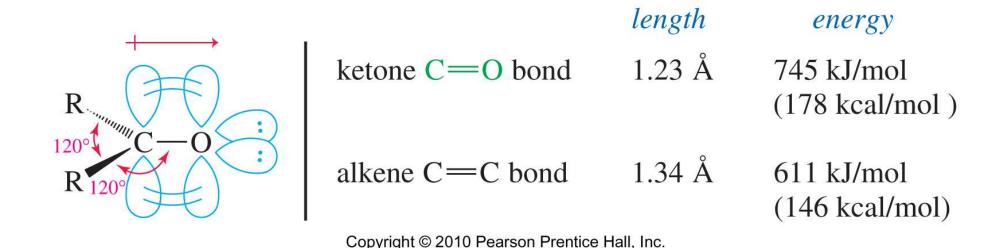
Common names of Ketones

- \square Named as alkyl attachments to -C=0.
- ☐ Use Greek letters instead of numbers.
- ☐ Historical Common Names

$$H_3C$$
 CH_3

propanone (acetone)

2-butanone (ethyl methyl ketone)


3-pentanone (diethyl ketone)

cyclohexanone

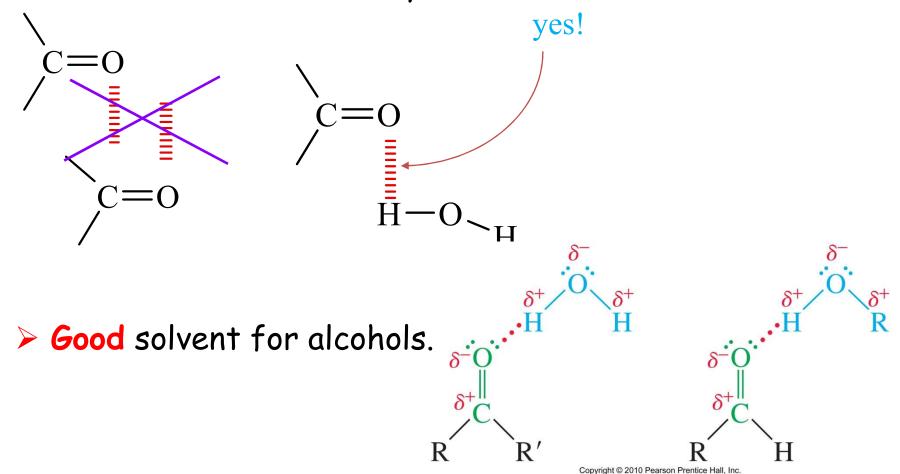
acetophenone (methyl phenyl ketone)

benzophenone (diphenyl ketone)

Carbonyl structure

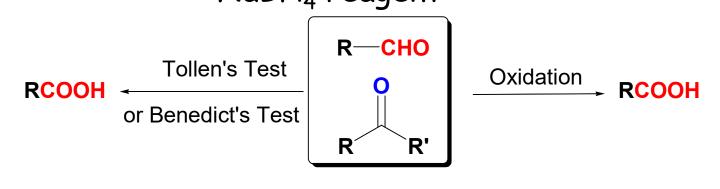
- \square Carbon is sp^2 hybridized.
- \Box C=O bond is shorter, stronger, and more polar than C=C bond in alkenes.

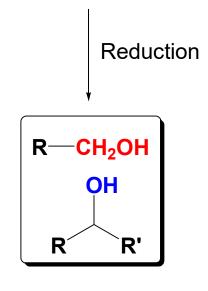
Physical Properties


- □ Carbonyl compounds cannot form H bonding with each other Because there is NOT an H connected to a F, N, O
- □ Aldehydes and Ketones are POLAR molecules and form dipole interactions
- □ Aldehydes and Ketones give higher boiling and melting points than hydrocarbon which have the same carbon number

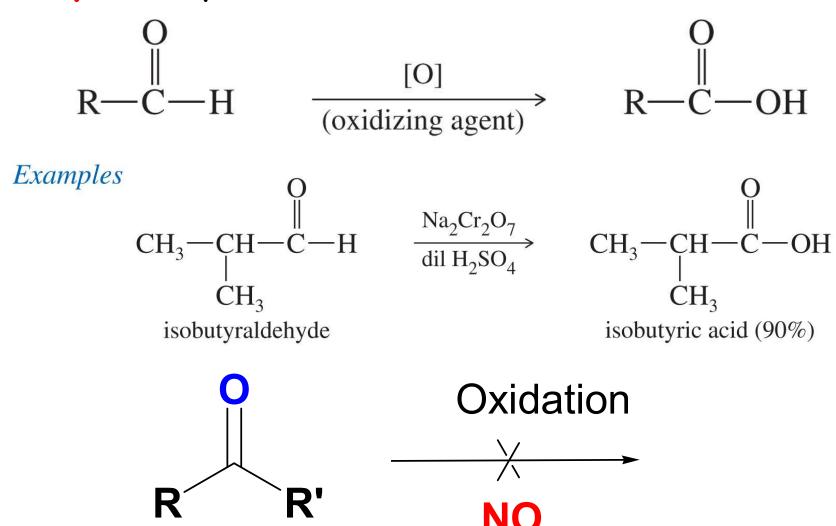
$$\begin{array}{c} \delta + C = O \\ \vdots \\ \delta - O \end{array}$$

Physical Properties


- □ Aldehydes and Ketones
 - > can form H bonds with water!
 - > solubility in water is about the same as alcohols.


 Acetone and acetaldehyde are miscible in water.

Chemical properties


- Oxidation Tollens Test
 Benedicts Test
- 2. Reduction Hydrogen addition- NaBH₄ reagent

Oxidation by common reagents

Only aldehyde is oxidized

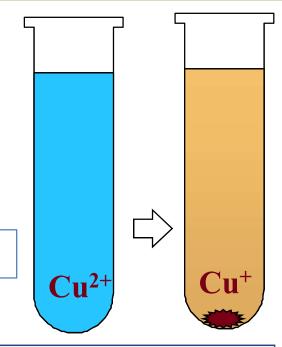
Tollen's Test

The Silver Mirror Test: Oxidation of Aldehydes

- > Ag⁺ ion in aq. ammonia
- > NO reaction with KETONES

$$Ag(NH_3)_2^+$$
 + aldehyde \Longrightarrow Silver Mirror

$$Ag^+ + 2 NH_3 \rightarrow Ag(NH_3)_2^+$$


$$Ag(NH_3)_2^+ + RCHO \rightarrow Ag^o + RCOO^- + 4NH_3$$

Benedict's Test

- ■Oxidation of Aldehydes
 - > Cu²⁺ ion, aqueous
 - > NO reaction with KETONES

Cu²⁺ + aldehyde
$$\Rightarrow$$
 Cu⁺(oxide) + acid

R-C-H +
$$2 \text{ Cu}^{2+}$$
 + 5 OH -
aldehyde

$$\begin{array}{c}
O \\
R-C-O \\
\end{array}$$
+ $2 \text{ Cu}_2O + 3 \text{ H}_2O$
carboxylic acid (ion)

Addition of H₂ (reduction)

Reduction to Alcohols:

- Both aldehyde and ketone are reduced by Hydrogen gas and a catalyst (Ni, Pd, Pt)
- > Similar to alkene to alkane reduction
- ➤ Aldehyde → primary alcohol
- > Ketone → second alcohol

CH
$$_3$$
 C -CH $_3$

acetone

H $_2$

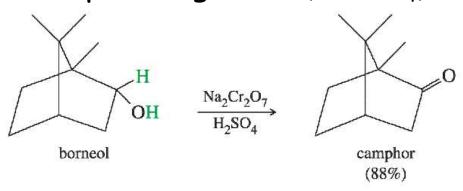
CH $_3$ CH -CH $_3$

2-propanol

Reduction using NaBH₄ or LiAlH₄

- □ NaBH₄ can reduce ketones and aldehydes, but NOT esters, carboxylic acids, acyl chlorides, or amides.
- □ LiAlH₄ can reduce ANY carbonyl because it is a very strong reducing agent.

Preparation of aldehyde


Oxidation of Primary Alcohols to Aldehydes: Pyridinium chlorochromate (PCC) is selectively used to oxidize primary alcohols to aldehydes.

□ Hydroboration-oxidation of an alkyne gives anti-Markovnikov addition of water across the triple bond.

R =
$$\frac{1. \text{ BH}_3}{2. \text{ H}_2\text{O}_2}$$
 $\left[\begin{array}{c} \text{R} \\ \text{H} \end{array}\right]$ $\left[\begin{array}{c} \text{OH} \\ \text{OH} \end{array}\right]$ $\left[\begin{array}{c} \text{R-CH}_2\text{--CHO} \\ \text{Aldehyde} \end{array}\right]$ Aldehyde $\left[\begin{array}{c} \text{Example} \\ \text{Alkyne} \end{array}\right]$ $\left[\begin{array}{c} \text{Allehyde} \\ \text{Alkyne} \end{array}\right]$ Aldehyde

Preparation of Ketones

□ Secondary alcohols are readily oxidized to ketones with sodium dichromate ($Na_2Cr_2O_7$) in sulfuric acid or by potassium permanganate ($KMnO_4$).

☐ The double bond is oxidatively cleaved by ozone followed by reduction. Ketones and aldehydes can be isolated as products.

Preparation of Ketones

□ Reaction between an acyl halide and an aromatic ring will produce a ketone.

$$O_2N$$
 p -nitrobenzoyl chloride

 O_2N
 p -nitrobenzoyl chloride

 O_2N
 p -nitrobenzophenone


 O_2N
 O_2N

☐ The initial product of Markovnikov hydration is an enol, which quickly tautomerizes to its keto form.

$$R-C \equiv C-H \xrightarrow{Hg^{2+}, H_2SO_4} \xrightarrow{H_2O} \xrightarrow{HO} \xrightarrow{H} \xrightarrow{H^+} R-C-C-H$$
alkyne enol (not isolated) methyl ketone
$$\xrightarrow{H_2SO_4, Hg^{2+}} \xrightarrow{H_2O} \xrightarrow{HO} \xrightarrow{C-C-H} \xrightarrow{H^+} \xrightarrow{C} \xrightarrow{C} \xrightarrow{CH_3}$$
ethynylcyclohexane enol cyclohexyl methyl ketone (90%)

3. Carboxylic acid and esters

□ Carboxylic acids are strong organic acids which contain the carboxyl group (-COOH, -CO₂H)

□ Esters are derivatives of organic acid which contain the group -COOR

3.1. Carboxylic acid

□ Carboxylic acids are classified as **aliphatic** or **aromatic** depending on whether R or an Ar is attached to the carboxylic group

R-COOH or **Ar-COOH**

Aliphatic acid

COOH

Aromatic acid

Nomenclature

Formula	IUPAC	Common
	alkan -oic acid	prefix – ic acid
НСООН	methanoic acid	formic acid
CH ₃ COOH	ethanoic acid	acetic acid
CH ₃ CH ₂ COOH	propanoic acid	propionic acid
CH ₃ CH ₂ CH ₂ COOH	butanoic acid	butyric acid

Nomenclature

Naming Rules

- ☐ Identify the longest chain
- ☐ (IUPAC) Number carboxyl carbon as 1
- \square (Common) Assign α , β , γ , δ to carbon atoms adjacent to carboxyl carbon

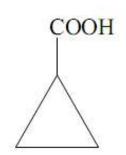
used in common names

Examples:

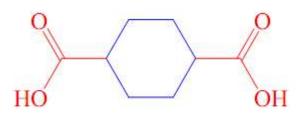
HC

IUPAC: 2- bromohexanoic acid

Common: a-bromohexanoic acid


3,3-dimethylbutanoic acid

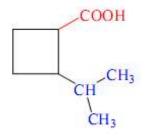
β,β-dimethylbutyric acid

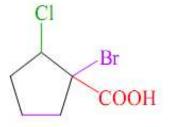

Nomenclature

Naming Cyclic Carboxylic Acids

☐ Cyclic compounds containing one or more COOH groups attached to the ring are named by identifying the name of the ring followed by the word carboxylic acid or dicarboxylic acids etc.

СООН




Cyclopropane carboxylic acid

Cyclopentanecarboxylic acid

1,4-Cyclohexanedicarboxylic acid

☐ The **carbon atom** bearing the carboxylic group is numbered 1 and the substituents are numbered relative to it.

2-Isopropylcyclobutane carboxylic acids

1-Bromo-2-chlorocyclopentane carboxylic acids

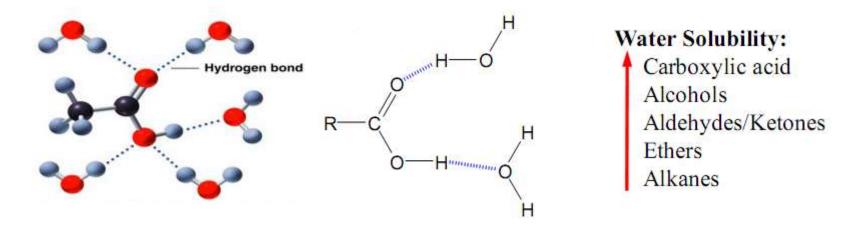
Nomenclature

Naming Aromatic Carboxylic Acids

- > The simplest aromatic carboxylic acid is benzoic acid.
- > Substituted benzoic acids are named with benzoic acid as the parent name.
- > Derivatives are named using numbers to show the location of substituents relative to the carboxyl group.
- The ring carbon attached to the carboxyl group is the #1 position.

Benzoic acid

Benzene carboxylic acid

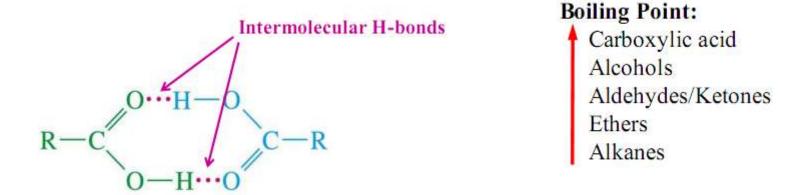

Salicylic acid
2-Hydroxybenzoic acid

2-Bromo-4-chloro benzoic acid

Physical Properties of Carboxylic Acids

Solubility

- The carboxylic acid are **highly polar** organic compounds.
- ➤ This **polarity** results from the presence of a strongly polarized carbonyl (C=O) group and hydroxyl (O-H) group.

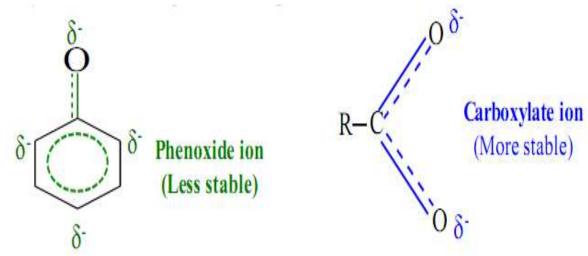


- As the **number** of carbons in a carboxylic acid series becomes **greater**, the **solubility** in water **decreases**.
- Aromatic carboxylic acids are insoluble in water.

Physical Properties of Carboxylic Acids

Boiling Point

Carboxylic acids are polar compounds and form very strong intermolecular hydrogen bonds to form a dimer.



As the number of carbons in a carboxylic acid series becomes greater, the boiling point increases.

Chemistry Properties of Carboxylic Acids

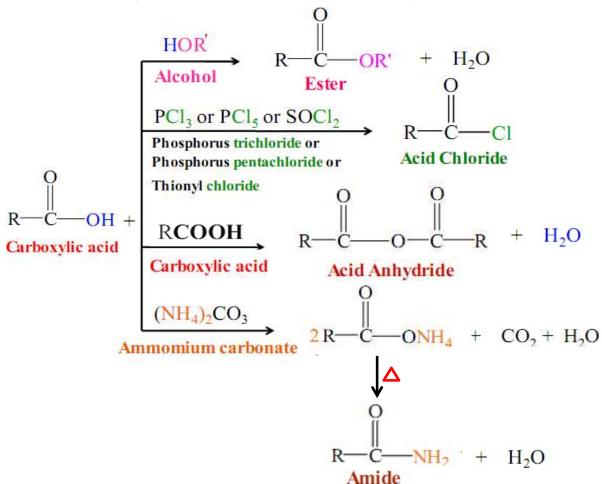
Acidity and Acid Strength

- ➤ The most important chemical property of carboxylic acids chemistry is their acidic nature.
- The mineral acids (HCl, HBr, HI, H₂SO₄, H₃PO₄) are defined as "strong acids" because they undergo complete dissociation.
- > Carboxylic acids are strong organic acids, they are much more acidic than alcohols.
- Carboxylic acids are stronger acids than phenols.

Chemistry Properties of Carboxylic Acids

Reaction with Bases: Salt formation and The carboxyl hydrogen is replaced by metal ion, M⁺

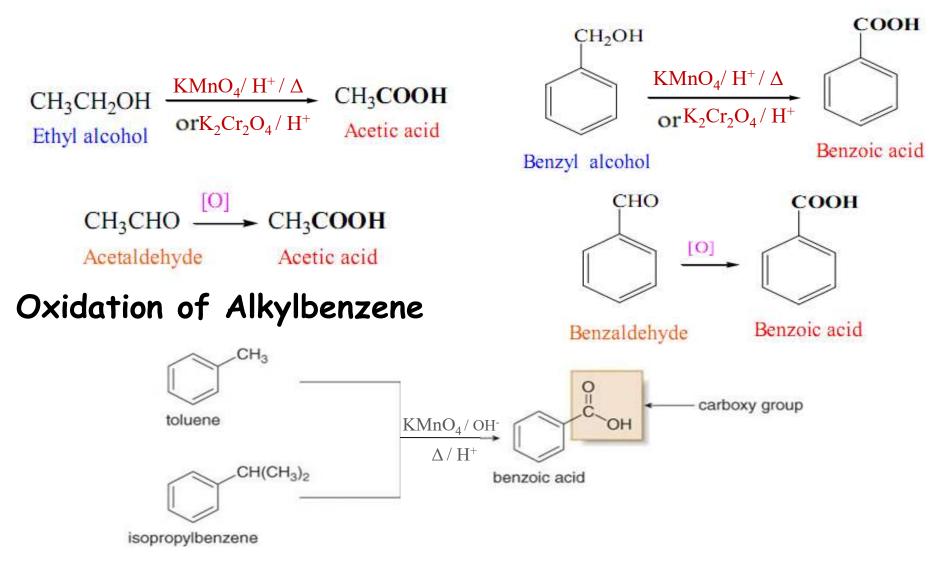
☐ With strong base:


■ With weak base

Weaker acids like **phenols** react only with strong bases like (NaOH or KOH) and will not react with NaHCO₃

Chemistry Properties of Carboxylic Acids

Reaction with reagents (Nucleophiles) to form acid derivatives:


When the OH of a carboxylic acid is replaced by a nucleophile (:Nu), a carboxylic acid derivative is produced.

Preparation of Carboxylic Acids

Oxidation

Oxidation of primary alcohols and aldehydes

Preparation of Carboxylic Acids

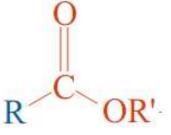
Hydrolysis of Nitriles:

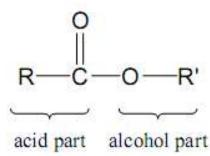
Nitriles: RC N or ArC N

- They are prepared by reacting a 1° or 2° alkyl halide with **cyanide** salt.
- Acid hydrolysis of a nitriles yields a carboxylic acids.

$$\begin{array}{c} RX + NaC = N \\ \hline Alkyl \ halide \ \ Cyanide \ salt \end{array} \qquad \begin{array}{c} RC = N \\ \hline Nitriles \end{array} \qquad \begin{array}{c} H_2O \\ \hline H^+ \end{array} \qquad \begin{array}{c} RCOO^- \\ \hline Carboxylic \ acids \end{array} \qquad + \ NH_3 \\ \hline CH_3CH_2C1 + NaCN \longrightarrow CH_3CH_2CN \xrightarrow{H_2O} CH_3CH_2COO^- \\ \hline + \ NH_3 \end{array} \qquad \begin{array}{c} CH_2CI \\ \hline + \ NaCN \longrightarrow \begin{array}{c} CH_2CN \\ \hline H_2O \\ \hline \end{array} \qquad \begin{array}{c} CH_2COO^- \\ \hline \end{array} \qquad + \ NH_3 \end{array}$$

Derivatives of Carboxylic acids


Compound	Name ending	Example	Name
acid chloride	-yl chloride or -carbonyl chloride	C_6H_5 CI	benzoyl chloride
anhydride	anhydride	$C_6H_5^{O}$ C_6H_5	benzoic anhydride
ester	-ate	C_6H_5 OCH $_2$ CH $_3$	ethyl benzoate
amide	-amide	C_6H_5 NHCH ₃	N-methylbenzamide


3.2 Esters

Nomenclature

- > the functional derivatives' names are derived from the common or IUPAC names of the corresponding carboxylic acids.
- > Naming Ester: Change -ic acid to -ate preceded by the alkyl is derived from the alcohol, R'OH.

alkyl alkanoate

Examples:

Benzyl ethanoate

Cyclohexyl butanoate

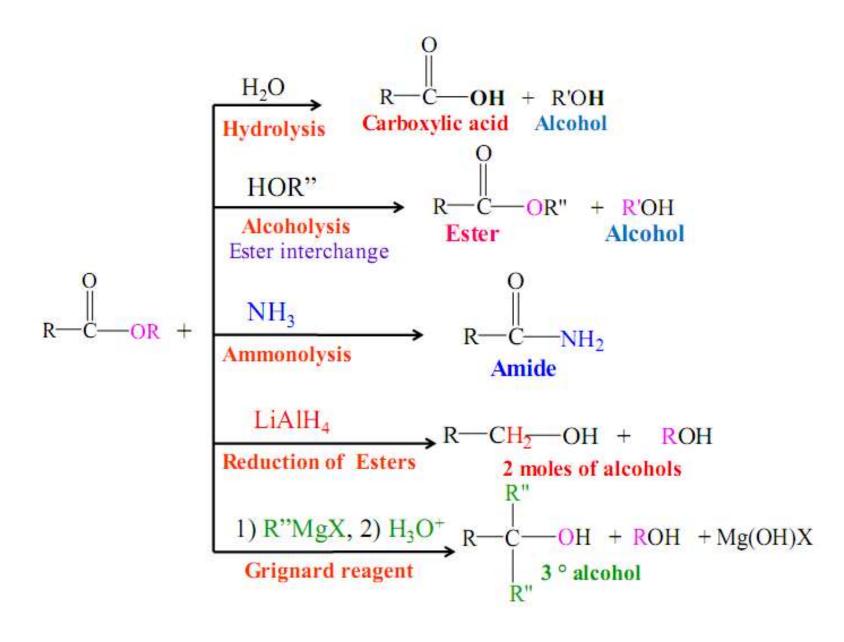
Preparation of Esters

Conversion of Carboxylic Acids into Esters

Methods include reaction of a carboxylate anion with a primary alkyl halide

© 2007 Thomson Higher Education

Esterification (Fisher)


Heating a carboxylic acid in an alcohol solvent containing a small amount of strong acid produces an ester from the alcohol and acid

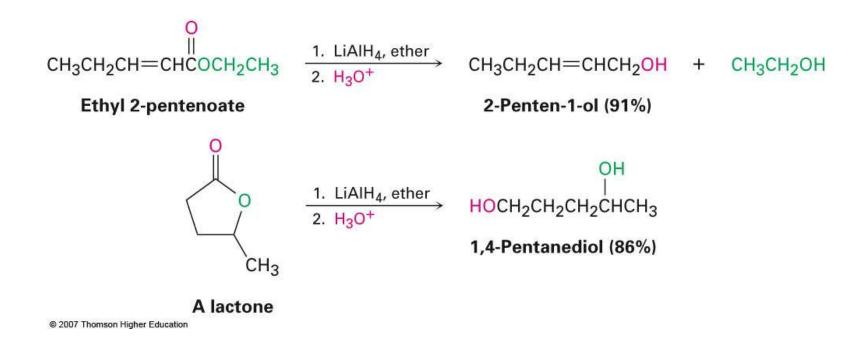
Mandelic acid

Ethyl mandelate (86%)

© 2007 Thomson Higher Education

Chemical Properties of Esters

Chemical Properties of Esters


Hydrolysis: Conversion of Esters into Carboxylic Acids

☐ An ester is **hydrolyzed** by aqueous **base** or aqueous **acid** to yield a carboxylic acid plus an alcohol

Aminolysis of Esters: Ammonia reacts with esters to form amides

Chemical Properties of Esters

Reduction: Conversion of Esters into Alcohols (Reaction with LiAlH₄ yields primary alcohols)

