Organic Chemistry

Chapter 1. Introduction to organic chemistry

Chapter 2. Hydrocarbon

Chapter 3. Stereochemistry

Chapter 4. Compounds bearing Oxygen

Chapter 5. Compounds bearing Nitrogen

Chapter 1: Introduction to organic chemistry

What is Organic Chemistry?

Organic Chemistry

- Chemistry of the compounds present in living organisms.
- ☐ They all contain carbon.
- Organic Chemistry is the Chemistry of Carbon.

Natural Sources of Organic Compounds

Living _____things

Carbohydrates /
Proteins / Fats /
Vitamins / Antibiotics

Crude oil or coal

Fractional distillation / destructive distillation

Alkanes / Alkenes / Alkynes / Aromatic hydrocarbons

History of organic chemistry

Organic chemistry is the study of carbon compounds (except CO, CO₂, carbonates, hydrogencarbonates, carbides and cyanides) obtained from natural sources or synthesized in the laboratories.

Ability to Catenate (tạo chuỗi)

☐ Each carbon atom has four unpaired electrons when excited and tend to form four strong covalent bonds

Carbon (excited state)

- ☐ Carbon atoms link together to form chains of varying length, branched chains and rings of different sizes
- ☐ Catenation: Ability of atoms in forming stable bonds with itself, hence joining up into chains or rings
- ☐ For group IV,

$$C_nH_{2n+2}$$
 $n = 1,2,3,...$ (no limit for n)
 Si_nH_{2n+2} $n = 1$ to 6 only \rightarrow silanes
 Ge_nH_{2n+2} $n = 1$ to 3 only \rightarrow germanes
 Sn_nH_{2n+2} Only SnH_4 (stannane) exists

Ability to form multiple bonds

Carbon (excited state)

Single bond, double bond and triple bond

$$-\frac{1}{C} - \frac{1}{C} - \frac{1}{C} - \frac{1}{C} = C$$

$$-\frac{1}{C} - \frac{1}{C} - \frac{1}{C} = C$$

$$-C = C$$

$$-C = C$$

$$-C = N$$

Functional Groups

- ☐ Organic compounds are classified by the presence of characteristic functional groups.
- ☐ A functional group is defined as an atom or a group of atoms that effectively determines the chemical properties of an organic compound.

- ☐ Ethanol and propan-1-ol have similar chemical properties
 - → they contain the same functional group —OH
- they are classified into the same homologous series alcohols

Homologous Series (đồng đẳng)

 \Box A homologous series is a series of compounds that have the same functional group, and each member differs from the next member by a – CH₂ – unit in their formulae.

☐ Members in the same series can be represented by a general formula.

e.g. alkanes: C_nH_{2n+2}

alkenes: C_nH_{2n}

alkynes: C_nH_{2n-2}

Homologous Series (đồng đẳng)

Functional group of an organic compound

Chemical properties

Members of a homologous series have similar chemical properties

- ☐ However, the physical properties change gradually along the homologous series
- e.g. the longer the carbon chain in the molecule (or the greater the molecular mass)
 - the greater the attractive force between molecules
 - the higher the melting point, boiling point and density

Double bond equivalent (DBE)

□ DBE may be calculated from molecular formula:

- •One DBE = one ring or one pi bond
- •Two DBE = two pi bonds, two rings, or one of each
- •Four DBE = possible benzene ring

Example
$$C_8H_{10}ClN$$
 DBE = $C - (H/2) + (N/2) + 1$ Four pi bonds and/or ring $= 8 - [(10+1)/2] + (1/2) + 1$ Possible benzene ring

Examples

Calculate DBE of following compounds with molecular formula:

Diethylamine, C₄H₁₁N

Pyridine, C₅H₅N

Acid acetic, C₂H₄O₂

Glucosamine, C₆H₁₃NO₅

Factors Affecting the Physical Properties

□Boiling point

☐ Melting point

□ Solubility

- □ Functional group
- □ Dipole Moment
- □Polarity
- □ Hydrogen Bonding

Hexane in CCl₄

Hexane in water

Organic Compounds

Nomenclature of Organic Compounds

The name of every organic molecule has 3 parts:

- > The parent name indicates the number of carbons in the longest continuous chain.
- > The suffix indicates what functional group is present.
- > The prefix tells us the identity, location, and number of substituents attached to the carbon chain.

